Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A search for ligninolytic peroxidases in the fungus pleurotus eryngii involving alpha-keto-gamma-thiomethylbutyric acid and lignin model dimers

Identifieur interne : 000B54 ( Main/Exploration ); précédent : 000B53; suivant : 000B55

A search for ligninolytic peroxidases in the fungus pleurotus eryngii involving alpha-keto-gamma-thiomethylbutyric acid and lignin model dimers

Auteurs : Caramelo [Espagne] ; Martinez ; Martinez

Source :

RBID : pubmed:10049842

Abstract

Because there is some controversy concerning the ligninolytic enzymes produced by Pleurotus species, ethylene release from alpha-keto-gamma-thiomethylbutyric acid (KTBA), as described previously for Phanerochaete chrysosporium lignin peroxidase (LiP), was used to assess the oxidative power of Pleurotus eryngii cultures and extracellular proteins. Lignin model dimers were used to confirm the ligninolytic capabilities of enzymes isolated from liquid and solid-state fermentation (SSF) cultures. Three proteins that oxidized KTBA in the presence of veratryl alcohol and H2O2 were identified (two proteins were found in liquid cultures, and one protein was found in SSF cultures). These proteins are versatile peroxidases that act on Mn2+, as well as on simple phenols and veratryl alcohol. The two peroxidases obtained from the liquid culture were able to degrade a nonphenolic beta-O-4 dimer, yielding veratraldehyde, as well as a phenolic dimer which is not efficiently oxidized by P. chrysosporium peroxidases. The former reaction is characteristic of LiP. The third KTBA-oxidizing peroxidase oxidized only the phenolic dimer (in the presence of Mn2+). Finally, a fourth Mn2+-oxidizing peroxidase was identified in the SSF cultures on the basis of its ability to oxidize KTBA in the presence of Mn2+. This enzyme is related to the Mn-dependent peroxidase of P. chrysosporium because it did not exhibit activity with veratryl alcohol and Mn-independent activity with dimers. These results show that P. eryngii produces three types of peroxidases that have the ability to oxidize lignin but lacks a typical LiP. Similar enzymes (in terms of N-terminal sequence and catalytic properties) are produced by other Pleurotus species. Some structural aspects of P. eryngii peroxidases related to the catalytic properties are discussed.

DOI: 10.1128/AEM.65.3.916-922.1999
PubMed: 10049842
PubMed Central: PMC91123


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A search for ligninolytic peroxidases in the fungus pleurotus eryngii involving alpha-keto-gamma-thiomethylbutyric acid and lignin model dimers </title>
<author>
<name sortKey="Caramelo" sort="Caramelo" uniqKey="Caramelo" last="Caramelo">Caramelo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, E-28006 Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, E-28006 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martinez" sort="Martinez" uniqKey="Martinez" last="Martinez">Martinez</name>
</author>
<author>
<name sortKey="Martinez" sort="Martinez" uniqKey="Martinez" last="Martinez">Martinez</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10049842</idno>
<idno type="pmid">10049842</idno>
<idno type="pmc">PMC91123</idno>
<idno type="doi">10.1128/AEM.65.3.916-922.1999</idno>
<idno type="wicri:Area/Main/Corpus">000B58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B58</idno>
<idno type="wicri:Area/Main/Curation">000B58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B58</idno>
<idno type="wicri:Area/Main/Exploration">000B58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A search for ligninolytic peroxidases in the fungus pleurotus eryngii involving alpha-keto-gamma-thiomethylbutyric acid and lignin model dimers </title>
<author>
<name sortKey="Caramelo" sort="Caramelo" uniqKey="Caramelo" last="Caramelo">Caramelo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, E-28006 Madrid, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, E-28006 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martinez" sort="Martinez" uniqKey="Martinez" last="Martinez">Martinez</name>
</author>
<author>
<name sortKey="Martinez" sort="Martinez" uniqKey="Martinez" last="Martinez">Martinez</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Because there is some controversy concerning the ligninolytic enzymes produced by Pleurotus species, ethylene release from alpha-keto-gamma-thiomethylbutyric acid (KTBA), as described previously for Phanerochaete chrysosporium lignin peroxidase (LiP), was used to assess the oxidative power of Pleurotus eryngii cultures and extracellular proteins. Lignin model dimers were used to confirm the ligninolytic capabilities of enzymes isolated from liquid and solid-state fermentation (SSF) cultures. Three proteins that oxidized KTBA in the presence of veratryl alcohol and H2O2 were identified (two proteins were found in liquid cultures, and one protein was found in SSF cultures). These proteins are versatile peroxidases that act on Mn2+, as well as on simple phenols and veratryl alcohol. The two peroxidases obtained from the liquid culture were able to degrade a nonphenolic beta-O-4 dimer, yielding veratraldehyde, as well as a phenolic dimer which is not efficiently oxidized by P. chrysosporium peroxidases. The former reaction is characteristic of LiP. The third KTBA-oxidizing peroxidase oxidized only the phenolic dimer (in the presence of Mn2+). Finally, a fourth Mn2+-oxidizing peroxidase was identified in the SSF cultures on the basis of its ability to oxidize KTBA in the presence of Mn2+. This enzyme is related to the Mn-dependent peroxidase of P. chrysosporium because it did not exhibit activity with veratryl alcohol and Mn-independent activity with dimers. These results show that P. eryngii produces three types of peroxidases that have the ability to oxidize lignin but lacks a typical LiP. Similar enzymes (in terms of N-terminal sequence and catalytic properties) are produced by other Pleurotus species. Some structural aspects of P. eryngii peroxidases related to the catalytic properties are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">10049842</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>65</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1999</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A search for ligninolytic peroxidases in the fungus pleurotus eryngii involving alpha-keto-gamma-thiomethylbutyric acid and lignin model dimers </ArticleTitle>
<Pagination>
<MedlinePgn>916-22</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Because there is some controversy concerning the ligninolytic enzymes produced by Pleurotus species, ethylene release from alpha-keto-gamma-thiomethylbutyric acid (KTBA), as described previously for Phanerochaete chrysosporium lignin peroxidase (LiP), was used to assess the oxidative power of Pleurotus eryngii cultures and extracellular proteins. Lignin model dimers were used to confirm the ligninolytic capabilities of enzymes isolated from liquid and solid-state fermentation (SSF) cultures. Three proteins that oxidized KTBA in the presence of veratryl alcohol and H2O2 were identified (two proteins were found in liquid cultures, and one protein was found in SSF cultures). These proteins are versatile peroxidases that act on Mn2+, as well as on simple phenols and veratryl alcohol. The two peroxidases obtained from the liquid culture were able to degrade a nonphenolic beta-O-4 dimer, yielding veratraldehyde, as well as a phenolic dimer which is not efficiently oxidized by P. chrysosporium peroxidases. The former reaction is characteristic of LiP. The third KTBA-oxidizing peroxidase oxidized only the phenolic dimer (in the presence of Mn2+). Finally, a fourth Mn2+-oxidizing peroxidase was identified in the SSF cultures on the basis of its ability to oxidize KTBA in the presence of Mn2+. This enzyme is related to the Mn-dependent peroxidase of P. chrysosporium because it did not exhibit activity with veratryl alcohol and Mn-independent activity with dimers. These results show that P. eryngii produces three types of peroxidases that have the ability to oxidize lignin but lacks a typical LiP. Similar enzymes (in terms of N-terminal sequence and catalytic properties) are produced by other Pleurotus species. Some structural aspects of P. eryngii peroxidases related to the catalytic properties are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Caramelo</LastName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, E-28006 Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martinez</LastName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martinez</LastName>
<Initials>AT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>3</Hour>
<Minute>3</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>3</Hour>
<Minute>4</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>3</Hour>
<Minute>3</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10049842</ArticleId>
<ArticleId IdType="pmc">PMC91123</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.65.3.916-922.1999</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1994 Jul 26;33(29):8694-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8038159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Oct;61(10):3515-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Sep;58(9):3101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1242-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8433984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Jun;63(6):2166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9172335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Sep 22;270(38):22254-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7673205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Dec;59(12):4017-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8285705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Aug;63(8):3301-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9251220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Nov 14;354(3):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7957943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1998 Aug 1;165(1):43-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9711838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Jun 13;34(23):7773-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7779824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Aug;60(8):2811-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Mar;62(3):1070-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Apr 15;237(2):424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8647081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1986 Dec;251(2):688-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3800395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Jul 15;260(14):8348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2989288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Apr 25;1339(1):23-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Oct 15;209(2):603-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1425667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 19;273(25):15412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9624124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Dec;60(12):4509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7811086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1987;41:465-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3318677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Aug 10;249(1):146-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9705846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Dec;59(12):4115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Apr 30;89(1):145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2373364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1982 Aug 15;206(2):423-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7150253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1995 Sep 6;1251(2):205-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7669812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 May 29;428(3):141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9654123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Martinez" sort="Martinez" uniqKey="Martinez" last="Martinez">Martinez</name>
<name sortKey="Martinez" sort="Martinez" uniqKey="Martinez" last="Martinez">Martinez</name>
</noCountry>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="Caramelo" sort="Caramelo" uniqKey="Caramelo" last="Caramelo">Caramelo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10049842
   |texte=   A search for ligninolytic peroxidases in the fungus pleurotus eryngii involving alpha-keto-gamma-thiomethylbutyric acid and lignin model dimers 
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10049842" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020